Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Optimization of picosecond laser structuring for the monolithic serial interconnection of CIS solar cells

Identifieur interne : 000776 ( Main/Repository ); précédent : 000775; suivant : 000777

Optimization of picosecond laser structuring for the monolithic serial interconnection of CIS solar cells

Auteurs : RBID : Pascal:13-0193163

Descripteurs français

English descriptors

Abstract

We report on the optimization of selective picosecond laser structuring for the monolithic serial interconnection of (Cu(In, Ga)(S,Se)2) CIS thin film solar cells. We introduce a quantitative value to compare the energy efficiency of the different investigated laser processes, the specific ablation energy, which indicates the required energy to remove a certain volume of the specific material. We have examined the structuring efficiencies for induced laser ablation processes for a modification of the beam profile (elliptical and flat-top beam shaping) and for the application of different laser wavelengths (1064 and 532 nm). Application of induced laser processes (often referred as "lift-off") decreases the specific ablation energy dramatically by nearly one order of magnitude. Modifications of the beam profile such as elliptical and flat-top beam shaping are nearly halving the energy per ablated volume relative to a circular beam. The application of a laser wavelength 532 nm decreases the specific ablation energy compared with 1064 nm significantly for processes involving the CIS layer. We finally demonstrate that with a picosecond laser power of only 2 W, the molybdenum back contact (P1, glass side) and the ZnO front contact (P3, ZnO on CIS) can be structured with a process speed of up to 4 m/s. About 2 μm thick CIS layer (P2) is structured by standard direct laser ablation at higher energy densities with 200 mm/s.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0193163

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Optimization of picosecond laser structuring for the monolithic serial interconnection of CIS solar cells</title>
<author>
<name sortKey="Heise, Gerhard" uniqKey="Heise G">Gerhard Heise</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Laser Center, Munich University of Applied Sciences (MUAS), Lothstrasse 34</s1>
<s2>80335 Munich</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Bavière</region>
<settlement type="city">Munich</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Heiss, Andreas" uniqKey="Heiss A">Andreas Heiss</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>AVANCIS GmbH, Otto-Hahn-Ring 6</s1>
<s2>81739 Munich</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Bavière</region>
<settlement type="city">Munich</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hellwig, Christian" uniqKey="Hellwig C">Christian Hellwig</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Laser Center, Munich University of Applied Sciences (MUAS), Lothstrasse 34</s1>
<s2>80335 Munich</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Bavière</region>
<settlement type="city">Munich</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kuznicki, Thomas" uniqKey="Kuznicki T">Thomas Kuznicki</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Laser Center, Munich University of Applied Sciences (MUAS), Lothstrasse 34</s1>
<s2>80335 Munich</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Bavière</region>
<settlement type="city">Munich</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Vogt, Helmut" uniqKey="Vogt H">Helmut Vogt</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>AVANCIS GmbH, Otto-Hahn-Ring 6</s1>
<s2>81739 Munich</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Bavière</region>
<settlement type="city">Munich</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Palm, Joerg" uniqKey="Palm J">Joerg Palm</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>AVANCIS GmbH, Otto-Hahn-Ring 6</s1>
<s2>81739 Munich</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Bavière</region>
<settlement type="city">Munich</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Huber, Heinz P" uniqKey="Huber H">Heinz P. Huber</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Laser Center, Munich University of Applied Sciences (MUAS), Lothstrasse 34</s1>
<s2>80335 Munich</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Bavière</region>
<settlement type="city">Munich</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0193163</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0193163 INIST</idno>
<idno type="RBID">Pascal:13-0193163</idno>
<idno type="wicri:Area/Main/Corpus">000D21</idno>
<idno type="wicri:Area/Main/Repository">000776</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1062-7995</idno>
<title level="j" type="abbreviated">Prog. photovolt.</title>
<title level="j" type="main">Progress in photovoltaics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Beam profiles</term>
<term>Beam shaping</term>
<term>Copper selenides</term>
<term>Copper sulfide</term>
<term>Energetic efficiency</term>
<term>Energy density</term>
<term>Flat top</term>
<term>Gallium selenides</term>
<term>Gallium sulfide</term>
<term>Glass</term>
<term>Indium selenides</term>
<term>Indium sulfide</term>
<term>Interconnection</term>
<term>Laser ablation technique</term>
<term>Laser assisted processing</term>
<term>Lift off</term>
<term>Molybdenum</term>
<term>Monolithic integrated circuit</term>
<term>Optimization</term>
<term>Performance evaluation</term>
<term>Picosecond</term>
<term>Solar cell</term>
<term>Standards</term>
<term>Thick film</term>
<term>Thin film cell</term>
<term>Zinc oxide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Optimisation</term>
<term>Picoseconde</term>
<term>Circuit intégré monolithique</term>
<term>Interconnexion</term>
<term>Cellule solaire</term>
<term>Cellule couche mince</term>
<term>Rendement énergétique</term>
<term>Evaluation performance</term>
<term>Méthode ablation laser</term>
<term>Profil faisceau</term>
<term>Sommet plat</term>
<term>Mise en forme faisceau</term>
<term>Décollement épitaxique</term>
<term>Couche épaisse</term>
<term>Norme</term>
<term>Densité énergie</term>
<term>Traitement par laser</term>
<term>Sulfure de gallium</term>
<term>Sulfure d'indium</term>
<term>Sulfure de cuivre</term>
<term>Séléniure de cuivre</term>
<term>Séléniure de gallium</term>
<term>Séléniure d'indium</term>
<term>Molybdène</term>
<term>Verre</term>
<term>Oxyde de zinc</term>
<term>Cu(In,Ga)(S,Se)2</term>
<term>ZnO</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Rendement énergétique</term>
<term>Norme</term>
<term>Molybdène</term>
<term>Verre</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We report on the optimization of selective picosecond laser structuring for the monolithic serial interconnection of (Cu(In, Ga)(S,Se)
<sub>2</sub>
) CIS thin film solar cells. We introduce a quantitative value to compare the energy efficiency of the different investigated laser processes, the specific ablation energy, which indicates the required energy to remove a certain volume of the specific material. We have examined the structuring efficiencies for induced laser ablation processes for a modification of the beam profile (elliptical and flat-top beam shaping) and for the application of different laser wavelengths (1064 and 532 nm). Application of induced laser processes (often referred as "lift-off") decreases the specific ablation energy dramatically by nearly one order of magnitude. Modifications of the beam profile such as elliptical and flat-top beam shaping are nearly halving the energy per ablated volume relative to a circular beam. The application of a laser wavelength 532 nm decreases the specific ablation energy compared with 1064 nm significantly for processes involving the CIS layer. We finally demonstrate that with a picosecond laser power of only 2 W, the molybdenum back contact (P1, glass side) and the ZnO front contact (P3, ZnO on CIS) can be structured with a process speed of up to 4 m/s. About 2 μm thick CIS layer (P2) is structured by standard direct laser ablation at higher energy densities with 200 mm/s.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1062-7995</s0>
</fA01>
<fA03 i2="1">
<s0>Prog. photovolt.</s0>
</fA03>
<fA05>
<s2>21</s2>
</fA05>
<fA06>
<s2>4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Optimization of picosecond laser structuring for the monolithic serial interconnection of CIS solar cells</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>HEISE (Gerhard)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>HEISS (Andreas)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>HELLWIG (Christian)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>KUZNICKI (Thomas)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>VOGT (Helmut)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>PALM (Joerg)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>HUBER (Heinz P.)</s1>
</fA11>
<fA14 i1="01">
<s1>Laser Center, Munich University of Applied Sciences (MUAS), Lothstrasse 34</s1>
<s2>80335 Munich</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>AVANCIS GmbH, Otto-Hahn-Ring 6</s1>
<s2>81739 Munich</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>681-692</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>26755</s2>
<s5>354000174777700300</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>33 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0193163</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Progress in photovoltaics</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We report on the optimization of selective picosecond laser structuring for the monolithic serial interconnection of (Cu(In, Ga)(S,Se)
<sub>2</sub>
) CIS thin film solar cells. We introduce a quantitative value to compare the energy efficiency of the different investigated laser processes, the specific ablation energy, which indicates the required energy to remove a certain volume of the specific material. We have examined the structuring efficiencies for induced laser ablation processes for a modification of the beam profile (elliptical and flat-top beam shaping) and for the application of different laser wavelengths (1064 and 532 nm). Application of induced laser processes (often referred as "lift-off") decreases the specific ablation energy dramatically by nearly one order of magnitude. Modifications of the beam profile such as elliptical and flat-top beam shaping are nearly halving the energy per ablated volume relative to a circular beam. The application of a laser wavelength 532 nm decreases the specific ablation energy compared with 1064 nm significantly for processes involving the CIS layer. We finally demonstrate that with a picosecond laser power of only 2 W, the molybdenum back contact (P1, glass side) and the ZnO front contact (P3, ZnO on CIS) can be structured with a process speed of up to 4 m/s. About 2 μm thick CIS layer (P2) is structured by standard direct laser ablation at higher energy densities with 200 mm/s.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Optimisation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Optimization</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Optimización</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Picoseconde</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Picosecond</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Picosegundo</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Circuit intégré monolithique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Monolithic integrated circuit</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Circuito integrado monolítico</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Interconnexion</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Interconnection</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Interconexión</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Cellule couche mince</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Thin film cell</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Célula capa delgada</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Rendement énergétique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Energetic efficiency</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Rendimiento energético</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Méthode ablation laser</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Laser ablation technique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Profil faisceau</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Beam profiles</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Sommet plat</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Flat top</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Techo plano</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Mise en forme faisceau</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Beam shaping</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Puesta forma haz</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Décollement épitaxique</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Lift off</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Desprendimiento epitáxico</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Couche épaisse</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Thick film</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Capa espesa</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Norme</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Standards</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Norma</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Densité énergie</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Energy density</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Densidad energía</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Traitement par laser</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Laser assisted processing</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Sulfure de gallium</s0>
<s5>22</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Gallium sulfide</s0>
<s5>22</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Galio sulfuro</s0>
<s5>22</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Sulfure d'indium</s0>
<s5>23</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Indium sulfide</s0>
<s5>23</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Indio sulfuro</s0>
<s5>23</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Sulfure de cuivre</s0>
<s5>24</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Copper sulfide</s0>
<s5>24</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Cobre sulfuro</s0>
<s5>24</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Séléniure de cuivre</s0>
<s2>NK</s2>
<s5>25</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Copper selenides</s0>
<s2>NK</s2>
<s5>25</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Séléniure de gallium</s0>
<s2>NK</s2>
<s5>26</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Gallium selenides</s0>
<s2>NK</s2>
<s5>26</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Séléniure d'indium</s0>
<s2>NK</s2>
<s5>27</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Indium selenides</s0>
<s2>NK</s2>
<s5>27</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Molybdène</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>28</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Molybdenum</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>28</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Molibdeno</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>28</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Verre</s0>
<s5>29</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Glass</s0>
<s5>29</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Vidrio</s0>
<s5>29</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Oxyde de zinc</s0>
<s5>30</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>Zinc oxide</s0>
<s5>30</s5>
</fC03>
<fC03 i1="26" i2="X" l="SPA">
<s0>Zinc óxido</s0>
<s5>30</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>Cu(In,Ga)(S,Se)2</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>ZnO</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fN21>
<s1>175</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000776 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000776 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0193163
   |texte=   Optimization of picosecond laser structuring for the monolithic serial interconnection of CIS solar cells
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024